103 research outputs found

    Regular graphs of odd degree are antimagic

    Full text link
    An antimagic labeling of a graph GG with mm edges is a bijection from E(G)E(G) to {1,2,…,m}\{1,2,\ldots,m\} such that for all vertices uu and vv, the sum of labels on edges incident to uu differs from that for edges incident to vv. Hartsfield and Ringel conjectured that every connected graph other than the single edge K2K_2 has an antimagic labeling. We prove this conjecture for regular graphs of odd degree.Comment: 5 page

    Linear Choosability of Sparse Graphs

    Get PDF
    We study the linear list chromatic number, denoted \lcl(G), of sparse graphs. The maximum average degree of a graph GG, denoted \mad(G), is the maximum of the average degrees of all subgraphs of GG. It is clear that any graph GG with maximum degree Δ(G)\Delta(G) satisfies \lcl(G)\ge \ceil{\Delta(G)/2}+1. In this paper, we prove the following results: (1) if \mad(G)<12/5 and Δ(G)≥3\Delta(G)\ge 3, then \lcl(G)=\ceil{\Delta(G)/2}+1, and we give an infinite family of examples to show that this result is best possible; (2) if \mad(G)<3 and Δ(G)≥9\Delta(G)\ge 9, then \lcl(G)\le\ceil{\Delta(G)/2}+2, and we give an infinite family of examples to show that the bound on \mad(G) cannot be increased in general; (3) if GG is planar and has girth at least 5, then \lcl(G)\le\ceil{\Delta(G)/2}+4.Comment: 12 pages, 2 figure

    Hamiltonicity in connected regular graphs

    Full text link
    In 1980, Jackson proved that every 2-connected kk-regular graph with at most 3k3k vertices is Hamiltonian. This result has been extended in several papers. In this note, we determine the minimum number of vertices in a connected kk-regular graph that is not Hamiltonian, and we also solve the analogous problem for Hamiltonian paths. Further, we characterize the smallest connected kk-regular graphs without a Hamiltonian cycle.Comment: 5 page
    • …
    corecore